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Geometrically non-linear vibrations of beams and plane frameworks are analyzed by the
hierarchical "nite element method (HFEM). Two main points are of interest. The "rst is to
compare polynomials, trigonometric functions and beam eigenfunctions as displacement
shape functions for beam hierarchical "nite elements. The second is to examine the
suitability of the HFEM for time domain non-linear analyses.

( 2001 Academic Press
1. INTRODUCTION

A structure subjected to large loads, or to loads with a frequency component close to
a natural frequency, may undergo oscillations with large amplitudes, and thus with
geometrical non-linearity. The beam is a widely used structural element, common in
aerospace, civil and mechanical engineering structures. It can be used on its own, assembled
to other beams, or to reinforce other elements such as plates or shells.

The "nite element method (FEM) is a powerful means of structural analysis. In large
amplitude vibrations, the FEM non-linear sti!ness matrices are functions of the unknown
generalized displacements. Therefore, in dynamic analysis in the time domain, iterations
must be carried out in each time step, and in the frequency domain, for each frequency.
Hence, substantial computational e!ort is required to complete a non-linear dynamic
analysis using a model with a large number of degrees of freedom (d.o.f.).

In the p-version of the FEM, the accuracy of the approximation is improved by
increasing the number of shape functions over the elements, without altering the mesh.
Often, the set of functions of an approximation of lower order p, constitutes a subset of the
set of functions of the approximation of order p#1, and the p-version of the FEM is called
&&hierarchical "nite element method'' (HFEM).

Polynomial functions are more common in "nite element analyses. Regarding the
HFEM, Legendre polynomials in the Rodrigues form are quite popular. They have, for
example, been applied to linear analyses of plates in references [1}3] and to non-linear
dynamic analyses of beams and plates in the frequency domain in reference [4}8]. In these
references, it was shown that convergence is achieved with far fewer degrees of freedom in
the HFEM than in the h-version of the FEM.

Since high order polynomials are ill conditioned [9], some researchers advised the use of
trigonometric displacement shape functions [10}13]. Houmat [10] investigated linear plate
0022-460X/01/370225#20 $35.00/0 ( 2001 Academic Press



226 P. RIBEIRO
vibration by the HFEM and compared trigonometric shape functions with Legendre
polynomials. The trigonometric HFEM was found to yield better accuracy with less d.o.f.
for s-s-s-s and s-f-s-f plates (s, f and c stand for simply supported, free and clamped boundary
conditions respectively). For fully clamped and for free plates both sets of shape functions
yield the same accuracy with the same number of d.o.f. Leung and Chan [11] used
polynomials and trigonometric functions to analyze linear vibrations of beams and plates
and found that accuracy is achieved with a reduced number of shape functions. Beslin and
Nicolas [12] proposed a set of hierarchical trigonometric functions to predict #exural
motion of plate-like structures in the medium frequency range. Bardell et al. applied these
functions to study linear vibrations of shells [13].

Beam eigenfunctions, exact solutions of the linear problem, are trigonometric and
hyperbolic or only trigonometric, depending on the boundary conditions. Since the non-
linear mode shape is either similar (though generally di!erent) to a linear mode, or to
a combination of linear modes [8], a beam element built with those eigenfunctions should
require a reduced number of degrees of freedom for accuracy in dynamic analyses. Another
advantage of these functions is that the linear sti!ness matrices and the mass matrices are
diagonal, therefore well conditioned and with several computational bene"ts.

The studies [9}13] where trigonometric shape functions were used, are all concerned with
linear analyses. In this paper, the advantages of di!erent shape functions in the analysis of
geometrically non-linear vibrations of plane beams and frames are investigated. Beam
eigenfunctions, trigonometric functions and polynomials are tested. The manipulation of
these functions can be quite cumbersome and will be carried out using symbolic
computation.

The number of d.o.f. necessary for accuracy is one of the main points of interest since it
determines the time necessary to solve the non-linear equations of motion. Nevertheless,
another important characteristic to compare is the time required to compute the element
matrices when using the di!erent sets of shape functions. This may be a determinant factor,
particularly because the calculation of the non-linear matrices requires much more time
then the calculation of the linear ones.

Time domain numerical integration schemes are very versatile and allow one to analyze
the response of structures to periodic and non-periodic loads. However, a dynamic analysis
applying time domain methods and a FEM model with a large number of degrees of
freedom may take quite a long time. Consequently, applications of these techniques to
analyze non-linear vibration are often restricted to a small time span and to particular
external loads. Due to its relatively small number of degrees of freedom, HFEM models
should be ideally suited to time domain simulations. This will also be ascertained in this
paper.

The governing di!erential equations in the time domain are derived by applying the
principle of virtual work, and solved by Newmark's method. The equations of motion in the
frequency domain are obtained by applying the harmonic balance method and solved by
a continuation method. The results of di!erent HFEM models and of h-version of the FEM
models are compared. Free vibrations and the response to di!erent loads are investigated
using time plots, phase planes and PoincareH sections.

2. EQUATIONS OF MOTION

Torsion free, plane bending vibrations of elastic and isotropic frames constituted by
beams with small uniform thickness h, are of interest. The derivation of the beam element
matrices essentially follows the procedure presented by Ribeiro and Petyt [8].



Figure 1. Beam element in local co-ordinate system.
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The e!ects of transverse shear deformations and rotatory inertia are neglected, and the
Bernoulli}Euler hypothesis is assumed. Therefore, the longitudinal displacement, u, and the
transverse displacement, w, are given by

u (x, z, t)"u0 (x, t)!zw0
,x

, w (x, z, t)"w0(x, t), (1)

where u0 and w0 are the values of the longitudinal and transverse, or lateral, displacement
components u and w at the middle plane and &&,x'' denotes the derivative with respect to x.
w0
,x

is the rotation of the cross-section about the y-axis. Assuming that the transverse
de#ection, w, is large compared with the beam thickness, but small compared with the
length, ¸, of the beam, the following strain}displacement relationship results:
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where u0
,x
#1

2
(w0

,x
)2 is the non-linear longitudinal strain at the middle plane of the beam, and

w0
,xx

is the curvature of the beam.
A beam element is shown in Figure 1. m is a non-dimensional element, or local co-

ordinate related to x by m"2x/¸.
The vector MdN, formed by the displacement components at a point within the element,

u and w, is expressed as the combination of the hierarchical shape functions and generalized
displacements MqN:
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where [N] is the matrix of shape functions, and xNuy and xNwy are, respectively, the
longitudinal and the transverse shape function vectors. The vectors Mq

u
N and Mq

w
N are,

respectively, the generalized displacement vectors in the x and z directions, p
i
is the number

of longitudinal shape functions and p
0

is the number of transverse shape functions used in
the element.

The number of shape functions can vary from element to element. The element has six
nodal degrees of freedom: two longitudinal displacements, u

i
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u
(1)N and u

j
"Mq
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)N;

two transverse displacement, w
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(1)N and w

j
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0
!1)N; and two rotations:
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h
i
"Mq

v
(2)N and h

j
"Mq

v
(p

0
)N. These nodal degrees of freedom are used to enforce boundary

conditions and continuity of displacements and rotations between elements (C
1

continuity).
The other element degrees of freedom are internal to the element. In the HFEM only
the shape functions that satisfy the geometric boundary conditions are included in the
model.

It is worth pointing out that with this formulation the axial force can vary within the
element. Often, particularly in analyses of slender beams, this force is approximated by its
mean value over the element [14].

The principle of virtual work states that

d=
in
#d=

V
#d=

ex
"0, (8)

where d=
in
, d=

V
and d=

ex
are, respectively, the work done by the inertia, internal and

external forces due to a virtual displacement MddN.
Using d'Alembert's principle to de"ne the virtual work of the inertia forces, the following

expression for the element mass matrix [M]
e
is obtained:
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where o is the mass per unit volume of the material that constitutes the beam element, b is
the width of the element, and [M

p
]
e

and [M
b
]
e
, are the longitudinal and bending mass

matrices.
The element sti!ness matrices are obtained from the work of the internal forces. The

linear sti!ness matrix [K
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Matrices [K
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]
e

and [K
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e

are the longitudinal and bending linear sti!ness matrices.
Matrices [K

3
]
e
and [K

2
]
e
are related by [K
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]
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e
. E is the Young modulus and I is

the second moment of area of the cross-section of the beam element.
If P
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(t) represents a concentrated transverse force acting at the point x"x

j
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a transverse distributed force, Plj
(t) a concentrated longitudinal force acting at the point
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j
, and Pld

(x, t) a longitudinal distributed force, the virtual work of the external forces is
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given by
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where MP
w
(t)N

e
and MP

p
(t)N

e
are the element vectors of generalized external forces applied in,

respectively, the transverse and longitudinal directions and d (x!x
j
) is a spatial Dirac delta

function.
Beams are analyzed with one hierarchical "nite element only. In order to analyze plane

frames the following procedure is adopted:

(1) one element is assigned to each bar of the frame;
(2) the number of shape functions to use in each element is chosen;
(3) the element matrices are calculated;
(4) the nodal degrees of freedom are transformed from local to global axes and the

element matrices in the global co-ordinate system are calculated;
(5) the element matrices are assembled into global matrices.
The procedures applied in steps (4) and (5) are similar to the one applied in the usual

FEM [15]. For example, the mass matrix in global co-ordinates, [M1 ]
e
, is given by
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e
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where [R]
e

is the matrix of direction cosines. This matrix transforms the generalized
co-ordinates from global to local axes:

MqN
e
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e
Mq6 N

e
. (15)

The bar over the vectors and matrices indicates that these are related to global co-ordinates.
The co-ordinates linked with the hierarchical shape functions are internal to each

element, and therefore the part of the element matrices strictly associated with them is not
altered in steps (4) and (5).

Although it is quite common to use hysteretic damping in "nite element analyses, it
should not be used in time domain studies, because it does not respect the causality
principle [16]. Thus, sti!ness proportional viscous damping, with a damping parameter a, is
added to the equations of motion, and the following two coupled systems of equations of
motion are obtained:
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The meaning of the matrices and vectors in the two former equations in similar to those of
the element ones, but now they are expressed in global axes and correspond to the
assembled model.

Since the longitudinal inertia was not neglected, the equations of motion have quadratic
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N* and cubic* [K1
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]* non-linearities and, therefore, they
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are not equations of the Du$ng type. The non-linear sti!ness matrix

[KNL]"C
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2
]

[K1
3
] [K1

4
]D (18)

is not symmetric.
Often, for slender beams, the longitudinal inertia and the damping contribution due to

the longitudinal stress are negligible [17, 18]. In this case, Mq6
p
N can be eliminated from

equations (16) and (17) and the equations of motion are simpli"ed to equations of the
Du$ng type:
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Nevertheless, even small longitudinal forces can cause the longitudinal inertia to have
some importance [19], and, in the presence of longitudinal forces, the longitudinal
inertia will not be neglected. Therefore, it will always be taken into account in the analysis
of frames.

The HBM relies upon assuming a time solution in the form of a Fourier series, and
comparing the coe$cients of the same harmonic components. In this way, non-linear
di!erential equations in the space variables and frequency are obtained. In this paper,
they are solved by a continuation method [8, 20]. The HBM will only be applied to
compare results with published ones in harmonic vibration. Therefore, multi-modal
vibrations will not be studied in the frequency domain (they will, though, be studied in the
time domain). A frequency domain study of beam multi-modal vibration was carried out in
reference [8].

The time domain equations of motion are solved by Newmark's direct integration
method [15, 21], with Newmark parameters: c"1

2
and b"1

4
. With these parameters

the method is also known as &&average acceleration method''. This is an implicit method,
unconditionally stable for linear systems, but numerical instabilities can arise for non-linear
systems and the energy of the system may be changed [21]. In order to minimize these
e!ects, particular care was given to the choice of the time step in the examples presented
in this paper. This was lower than the value recommended for linear systems, Dt"n/50u

n
[15], where u

n
is the natural frequency of the highest mode which contributes signi"cantly

to the response. Moreover, the validity of the results was veri"ed by using di!erent
time steps.

3. DISPLACEMENT SHAPE FUNCTIONS

The performance of di!erent sets of transverse shape functions will be investigated in this
paper. One of these sets is constituted by the Rodrigues form of Legendre polynomials and
by the cubic shape functions, known as Hermite cubics, usually applied in the h-version of
the FEM [1}8, 10]. With this set, which is called the set of f shape functions, C1 continuity
exists between elements. Moreover, boundary conditions are easy to implement, since only
one of the "rst four shape functions has either displacement or rotation di!erent from zero
at the end of each element. All higher order hierarchical functions have zero amplitudes and
slopes at m"!1 and 1. A set of polynomials called the g set, which so far has only been
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used as longitudinal shape functions, will also be applied in conjunction with Hermite
cubics f

1
and f

3
. With this set only C0 continuity is guaranteed between elements. Both sets

are given in Appendix A.
Beam eigenfunctions, i.e., the linear modes of bending vibration of a beam, will also be

tried. These functions are trigonometric and hyperbolic or only trigonometric, depending
on the boundary conditions, and can be found in some standard books on vibrations, as for
example in reference [22]. It is worth pointing out here that the non-linear modes vary with
the vibration amplitude and are not equal to the linear ones.

Trigonometric shape functions, which have been applied in references [12, 13] to study
the linear vibrations of plates and of curved panels, and which have as an advantage over
high order polynomials the fact that they are not ill conditioned, will be tested. They are
also given in Appendix A. In order to satisfy boundary conditions, the functions f

1
}f

4
are

used in conjunction with the trigonometric functions.
Finally, a set of functions which is a variant of Houmat's functions [10] is also

investigated. This set of functions is derived by assuming the following displacement "eld
for the two-node beam element:
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1
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2
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2

(m#1), r'4. (21)

Following the steps in reference [10], the ensuing set of hierarchical shape functions is
derived:

H
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[!(1!(!1)r)#(1#(!1)r)m#(1!(!1)r)m2!(1!(!1)r)m3]

#sin
rn
2

(m#1).

This set of functions leads to zero displacement and rotation at the element's nodes and is
well conditioned. The "rst four shape functions are again the Hermite cubics.

Regarding longitudinal shape functions, the g polynomials and the bar eigenfunctions,
exact solutions of linear longitudinal vibration of a beam (a problem usually called
vibration of rods or bars), will be used. The latter are simply sine functions.

A symbolic computation package is employed to manipulate the shape functions and
construct the element mass and sti!ness matrices.

4. NUMERICAL RESULTS AND DISCUSSIONS

Simply supported and clamped}clamped beams, and two plane frames made of
aluminium, with a Young modulus E"7]1010 N/m2 and mass density o"2778 kg/m3,
are analyzed. The beams width, thickness and length are, respectively, b"0)02 m,
h"0)002 m and ¸"0)58 m. The plane frames are constituted by three bars, as shown in
Figure 2. The exterior boundary conditions are clamped, but in Frame 1, bar 2 is rigidly
linked to bars 1 and 3, whilst in Frame 2 the bars are connected by articulated joints. The
bars have equal square section, whose width is b"0)02 m, and equal length, ¸"0)5 m.

In the "rst subsection, the convergence with di!erent sets of shape functions is analyzed in
detail by studying harmonic free vibration in the frequency domain, and results are
compared with published results. Then, in a second subsection, time domain analyses are
carried out.



Figure 2. Portal plane frame.
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The linear modes of a simply supported and a clamped}clamped beam are symmetric or
antisymmetric. In the harmonic solution of beams, these symmetries are used to reduce the
number of degrees of freedom of the model by an adequate choice of transverse and
longitudinal shape functions. However, in non-harmonic vibration antisymmetric modes
can be excited by symmetric ones and vice versa [8]. Therefore, in the time domain
simulations, both symmetric and antisymmetric shape functions are used.

4.1. FREQUENCY DOMAIN ANALYSES*COMPARISON OF DIFFERENT SHAPE FUNCTIONS

This section begins with the analysis of simply supported beams. Table 1 compares the
number of d.o.f. required to calculate the fundamental linear frequency in the h-versions of
the FEM and the HFEM with di!erent transverse shape functions. Obviously, with beam
eigenfunctions, a number of linear modes equal to the number of shape functions used can
be studied accurately. The polynomial g shape functions perform better than the f ones,
since they respect the simply supported boundary conditions without the need to use the
cubic polynomials f

2
and f

4
. The h-versions of the FEM require more degrees of freedom

than any HFEM one.
Regarding non-linear analyses, the convergence study shown in Table 2 demonstrates

that a very small number of transverse and longitudinal beam eigenfunctions provides very
accurate results (the relative error is always smaller than 2)75]10~4). w

m
represents the

maximum amplitude of vibration and r the radius of gyration.
In Table 3, the non-linear natural frequencies of vibration calculated using the beam

eigenfunctions are compared with the ones calculated using polynomials, and with results
from the literature. The HFEM with beam eigenfunctions requires a smaller number of
degrees of freedom for accuracy: four f polynomials or three g polynomials are necessary to
provide results that are slightly less accurate than with two beam eigenfunctions.

The number of degrees of freedom of the model has a great in#uence on the time
necessary to calculate the solutions. However, the time necessary to compute the element
matrices and obtain the model may also be an important factor in the choice of a set of
shape functions. Table 4 compares the CPU time necessary to generate the hierarchical
non-linear beam elements of Table 3 with di!erent shape functions.s The time required
when using beam eigenfunctions was taken as reference. The same two longitudinal shape
sIt is important to point out that this analysis was carried out using symbolic computation and the same quite
simple algorithm for all computations.



TABLE 1

Fundamental linear frequency parameter j"u2lm¸4/EI.ss beam

Exact FEM [23] FEM [14] HFEM!f HFEM!g HFEM!beam
[22] (eight elements (six elements polynomials polynomials eigenfunctions

!34 d.o.f.) !12 d.o.f.) (1 el.!4 d.o.f.) (1 el.!3 d.o.f.) (1 el.!1 d.o.f.)

97)409 97)409 97)419 97)409 97)409 97)409

m is the mass per unit length.

TABLE 2

Non-linear natural frequency u/ul1
calculated with ss beam eigenfunctions

p
0
"2 p

i
"4

w
m
/r p

i
"1 p

i
"4 p

i
"8 w

m
/r p

0
"1 p

0
"2 p

0
"4

1)0 1)0897 1)0897 1)0897 1)0 1)0900 1)0897 1)0897
2)0 1)3229 1)3229 1)3229 2)0 1)3231 1)3229 1)3229
3)0 1)6394 1)6394 1)6394 3)0 1)6396 1)6394 1)6394

TABLE 3

Non-linear natural frequencies u/ul1
of ss beam

w
m
/r u/ul1

u/ul1
HFEM u/ul1

HFEM u/ul1
HFEM u/ul1

[14]
Elliptic f polynomials g polynomials eigenfunctions six elements

integral [24] 4 d.o.f. 3 d.o.f. 2 d.o.f. 12 d.o.f.

1)0 1)0892 1)0897 1)0897 1)0897 1)0865
2)0 1)3177 1)3229 1)3229 1)3299 1)3331
3)0 1)6256 1)6400 1)6398 1)6394 1)6422

TABLE 4

CP; time required to create di+erent hierarchical elements for ss beam

Transverse shape functions

Longitudinal f polynomials g polynomials Beam eigenfunctions
shape functions 4 d.o.f. 3 d.o.f. 2 d.o.f.

Trigonometric 230% 85% 100%
polynomial 95% 68% 68%
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functions were applied to calculate the result in each row. Since they require more shape
functions for accuracy, f polynomials also require more computing time to construct the
beam element. The set of g polynomials is the one that demands less time.



TABLE 5

Non-linear natural frequency, u/ul1
of cc beam. Beam eigenfunctions

p
0
"2 p

i
"4 p

0
"4

w
m
/r p

i
"1 p

i
"2 p

i
"4 p

0
"1 p

0
"2 p

0
"4 p

i
"5 p

i
"6

1)0 1)0321 1)0225 1)0222 1)0223 1)0222 1)0222 1)0222 1)0222
2)0 1)1225 1)0873 1)0860 1)0863 1)0860 1)0860 1)0858 1)0858
3)0 1)2579 1)1875 1)1843 1)1853 1)1843 1)1839 1)1834 1)1833

TABLE 6

¸inear natural frequencies of cc beam (rad/s)

ul1
ul2

ul3
ul4

10 Legendre pol. 192)751 531)325 1041)61 1721)83
10 H functions 192)751 531)325 1041)61 1721)84
15 trigonometric functions 192)774 531)543 1042)30 1724)12

TABLE 7

Natural frequency, u/ul1
, of cc beam

w
m
/h 0)5 1 1)5 2

HFEM polynomials, 5 1)0651 1)2377 1)4771 1)7530
d.o.f. (p

0
"5 and p

i
"5) [8]

HFEM eigenfunctions 4 1)0651 1)2379 1)4777 1)7550
d.o.f. (p

0
"4 and p

i
"5)

HFEM eigenfunctions 5 1)0651 1)2377 1)4771 1)7534
d.o.f. (p

0
"5 and p

i
"6)

w
m
/r 1 2 3 *

FEM [25] } eight quadrilateral elements 1)0217 1)0831 1)1756 *

HFEM eigenfunctions 1 1)0222 1)0858 1)1833 *

element 4 d.o.f. (p
0
"4 and p

i
"6)
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Regarding clamped}clamped beams, Table 5 shows that a small number of transverse
and longitudinal cc beam eigenfunctions provides an accurate calculation of the non-linear
natural frequency. However, more shape functions are necessary than in the simply
supported case.

The convergence of the linear natural frequencies is approximately as rapid with the
H shape functions as with the Legendre polynomials (Table 6). The trigonometric shape
functions did not behave very well at these lower frequencies: with 15 transverse shape
functions, convergence had not yet been achieved.

In Table 7, the non-linear natural frequencies of vibration calculated by the HFEM with
beam eigenfunctions are compared with the HFEM ones calculated in reference [8] using



TABLE 8

CP; time required to create hierarchical elements with 4 d.o.f. (p
0
"4) for cc beam

Polynomials Eigenfunctions Trigonometric functions H functions

CPU time 0)33% 100% 40% 45%
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polynomials and with the h-version of the FEM results given in reference [25]. The FEM
requires more d.o.f. than any version of the HFEM. The table also shows that no visible
gain results from using the beam shape functions instead of the Legendre polynomials, to
study non-linear clamped}clamped beams.

Table 8 compares the CPU time necessary to generate hierarchical non-linear beam
elements with di!erent shape functions. Four transverse shape functions and two
longitudinal shape functions were used in all cases. The longitudinal functions are
polynomials in the "rst two columns and sine functions in the other two. The time required
when using beam eigenfunctions was taken as reference.

The time necessary to construct the element matrices greatly increases with the number of
cc beam eigenfunctions employed, because these are trigonometric and hyperbolic
functions. If the same number of d.o.f. is used, the trigonometric shape functions suggested
by Beslin and Nicolas [12] and the trigonometric H functions require less time than the cc
beam eigenfunctions, but require much more time than Legendre polynomials. The same
remains true if the H functions are used in conjunction with polynomial functions for the
longitudinal displacements. As seen before, the Beslin and Nicolas functions require many
more d.o.f. for an accurate investigation of low order modes than any of the other functions.

Modes of very high order were analyzed and no ill-conditioning problems were found
with the high order Rodrigues' form of Legendre polynomials employed. Should these
occur, then more elements can be added to the model and the order of the shape functions
reduced. Otherwise, trigonometric functions may be used, and the set of H functions is
recommended. Obviously, if modes of very high order are under study, then the
Bernoulli}Euler theory is not valid and rotatory inertia and shear deformation should be
taken into account.

Other polynomials did not behave as well as the Legendre ones. For example, a group of
orthogonal polynomials presented by Bhat [26] were investigated by Ribeiro and Petyt in
reference [27]. It was found that the Rodrigues form of Legendre polynomials permit
a quicker derivation of the matrices involved in the HFEM. Moreover, it was numerically
veri"ed by analyzing isotropic beams that these polynomials produce diagonal linear
longitudinal and bending sti!ness matrices and a non-linear sti!ness matrix with dominant
diagonal terms. In the same case, Bhat's polynomials have the advantage of producing a
diagonal mass matrix (with the other set of polynomials, the mass matrix is banded), which
could allow a quicker resolution of eigenvalue problems and of the equations of motion.
However, the non-linear sti!ness matrix does not have a dominant diagonal and high order
Bhat's polynomials are greatly a!ected by numerical errors, as shown in Figure 3.

In conclusion, for a general non-linear dynamic plane problem with beam elements, the
best choice of shape functions seems to be the set of Legendre polynomials plus Hermite
cubics for the transverse displacements and the g polynomials plus linear functions for the
axial displacement. With these sets, di!erent boundary conditions can be respected and C1

continuity of transverse displacements is guaranteed between elements. Moreover, for
non-linear vibration of clamped}clamped beams, Legendre polynomials display the same



Figure 3. Bhat's polynomial of order 14: **, plotted using nine digits; } } } }, plotted using 10 digits.

TABLE 9

First ,ve linear natural frequencies of portal Frame 1 (Hz)

FEM Polynomial HFEM

177 d.o.f. 222 d.o.f. 357 d.o.f. 30 d.o.f. 34 d.o.f. 49 d.o.f.

58)955 58)955 58)955 59)103 59)103 59)103
231)56 231)56 231)56 232)69 232)69 232)69
377)23 377)23 377)23 380)47 380)47 380)47
405)84 405)83 405)83 410)39 410)38 410)38
811)96 811)93 811)90 823)74 823)66 823)66
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or better degree of accuracy with similar number of degrees of freedom than the other sets of
functions analyzed, and require far less time to compute the element matrices.

On the other hand, simply supported beam eigenfunctions, which are simply sine
functions, allow the element matrices to be computed quickly, and require a reduced
number of degrees of freedom. Nevertheless, with these latter functions continuity of
rotation between elements cannot be guaranteed (only C0 continuity is guaranteed).
Therefore, sine functions are only recommended as transverse displacement shape functions
if the problem has beam elements with simply supported boundary conditions. Another
good option for this latter case is the set of g polynomials.

The frames were analyzed using three elements, one for each bar. Regarding Frame 1, the
transverse shape functions used are the f polynomials. The longitudinal shape functions are
the g polynomials.

In Table 9, the linear natural frequencies of Frame 1, calculated using the h-version of the
"nite element method, implemented in a commercial software package, and the HFEM are
given. The results agree closely, although the HFEM converges to slightly larger values.
With 34 d.o.f. the HFEM calculates the "rst "ve linear natural frequencies with "ve digit



TABLE 10

First ,ve linear natural frequencies of portal Frame 2 (Hz)

FEM Polyn./trigonometric HFEM Polynomial HFEM

224 d.o.f. 359 d.o.f. 24 d.o.f. 51 d.o.f. 37 d.o.f. 48 d.o.f.

37)170 37)170 37)201 37)201 37)201 37)201
181)12 181)12 181)62 181)62 181)62 181)62
282)34 282)34 284)19 284)19 284)19 284)19
309)62 309)62 311)77 311)77 311)77 311)77
712)60 712)58 720)18 720)18 720)18 720)18

GEOMETRICALLY NON-LINEAR VIBRATION OF FRAMES 237
accuracy, while the FEM with 222 d.o.f. (each bar is modelled by 25 elements) calculates the
"fth natural frequency with only four digit accuracy.

In the h-version of the FEM model used, each element has 2 nodes and 3 degrees of
freedom per node and several elements are necessary to model each bar. Therefore,
continuity of the second derivative of the transverse displacement and "rst derivative of the
axial displacement are not imposed between the elements. On the other hand, those
continuities, and continuity of higher order derivatives, are always respected in each bar of
the HFEM model, since a bar is represented by one element only with high order shape
functions.

In Table 10, the linear natural frequencies of Frame 2, calculated using the h-version
of the "nite element method and the HFEM are given. Bars one and three were modelled
using f polynomials. Bar three was modelled with g polynomials plus functions f

1
and

f
3

(polynomial HFEM), or with sine functions plus functions f
1

and f
3

(polynomial/trigonometric HFEM). The results agree closely, but both HFEM models
allow accurate results to be obtained with far fewer degrees of freedom then the h-version of
the FEM. In this case, the HFEM with trigonometric shape functions is the one that
requires less d.o.f.

4.2. TIME DOMAIN ANALYSES

A point harmonic excitation was applied transversely at the middle of the beam clamped
at both ends. The frequency of the external force is 210 rad/s and its amplitude was varied
from 1 to 10 N. The value of the damping parameter is 0)001, the longitudinal displacements
were not neglected but the longitudinal inertia was.

In Figure 4, the phase plots and time histories of the response at the middle of the beam
are represented for two amplitudes of excitation. The shapes assumed by the beam at four
instants separated by a quarter of the period of excitation are also shown.

Since both phase plots are closed curves in the phase plane, the beam vibrates in
a periodic manner. For larger amplitudes of the external force, the third mode of vibration is
excited, harmonics other than the fundamental are present in the response and the phase
plane loses symmetry with respect to the origin.

In order to assess the in#uence of the damping parameter a transverse force
with 210 rad/s and 10 N was again applied to the cc beam, but now with a equal to 0)0001.
In Figure 5, the phase plots, time histories and PoincareH maps of the response at the middle
of the beam, and the shapes assumed by the beam at a particular instant are shown.



Figure 4. (a) Phase plot and (b) time history at the middle of the beam, when F"1 N. (c) Phase plot and (d) time
history at the middle of the beam, and (e) shapes assumed by the beam, when F"10 N.
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Plots (a), (c), (e) and (g) were obtained without longitudinal inertia and plots (b), (d), (f ) and
(h) with longitudinal inertia.

Although the frequency of excitation is close to the "rst linear natural frequency, the
shape of the beam at the instant represented in Figure 5 is determined by the "rst and third
modes. The PoincareH sections are de"ned by w (m"0):!2)55]10~3. Since the orbit
intersects the PoincareH sections twice, as shown in Figure 5(g) and 5(h), a period-doubling
bifurcation occurred. The state-space portraits are closed lines and therefore the beam still
vibrates in a periodic manner. Although the amplitude of vibration computed with and
without considering the longitudinal inertia is the same, the plots show that this inertia has
little in#uence on the response of the beam. The axial displacement and inertia will be taken
into account in all of the following computations.

A transverse excitation of the form F"10 cos(210t)#5 cos(225t) was applied at the
middle of the beam clamped a both ends. In this and the following analyses the value of a is
0)0001. Figure 6 shows the phase plot, time history and PoincareH map of the response at the
middle of the beam.



Figure 5. (a, b) Phase plots, (c, d) time histories, (e, f ) shape assumed by the beam and (g, h) PoincareH maps.
F"10 N.
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The phase plot is not a closed curve; therefore the response is not periodic. The time
history of the response has a random aspect, characteristic of motions with many frequency
components. The period of the "rst forcing term is ¹"2n/X, where X is 210 rad/s. This
period was used to construct the PoincareH map by starting at t"0 and sampling the state
variables*displacement and velocity*at intervals ¹ [20, 28]. It appears that the PoincareH
map is neither a closed curve, nor a number of discrete points and therefore the motion may
be chaotic.

An excitation with a constant term and a harmonic term with a frequency close to the
"fth natural frequency, F"5000(1#cos(5200t)), was applied transversely at a quarter of



Figure 6. (a) Time history, (b) phase plane and (c) PoincareH map.
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bar 2 of Frame 1. Figure 7 shows the respective phase plot, time history and PoincareH map
of the transverse displacement at a quarter of beam 2. The PoincareH map was de"ned by
sampling the system at intervals of 2n/5200 s. The frequency of excitation is close to the "fth
linear natural frequency. Nevertheless, with the hierarchical "nite element model used,
which has only 39 d.o.f., it is possible to study very high order modes of vibration.

By analyzing the mode shapes it was found that the response is modulated by the second
and "fth modes. However, since the phase plot is a closed line and the orbit de"nes a point
in the PoincareH section, the response is periodic. The motion presents beating, but
the beating frequency is 3900 rad/s and is commensurate with 5200 rad/s (3]5200!
4]3900"0), which con"rms the periodicity of the response.

A transverse excitation with the form 5000(cos(2400t)#cos(2600t)) was applied at
a quarter of bar 2 of Frame 1. Figure 8 shows the phase plot, time history and PoincareH map
of the transverse displacement at a quarter of beam 2. The phase plot is a closed line, but
with several loops. The PoincareH section*which was de"ned by sampling the system at
intervals of 2n/2400 s*is a "nite number of discrete points. Therefore, the response is still
periodic, but several period-doubling bifurcations occurred.

5. CONCLUSIONS

Several sets of displacement shape functions for hierarchical beam elements were
investigated. In general, geometrically non-linear plane problems, regarding the transverse
displacement shape functions, Legendre polynomials plus Hermite cubics have more
advantages than the beam eigenfunctions and trigonometric functions investigated. With



Figure 7. (a) Time response, (b) phase plot and (c) PoincareH map at point m"0)5 of bar 2.
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those polynomials accuracy is achieved with a small number of degrees of freedom,
C1 continuity is guaranteed between elements, and the element matrices are quickly
derived. For a general plane problem, the g polynomials plus linear functions are
recommended as axial displacement shape functions for beam elements. Sine functions are
recommended for both transverse and axial displacements for beam elements with simply
supported boundary conditions. Another good option for this last case is the set of
g polynomials.

Time domain analyses of beams and frames were carried out using hierarchical "nite
element spatial models. Due to the small number of degrees of freedom characteristic of this
method, it was possible to obtain quickly the response in the time domain, and to collect
su$cient data to de"ne PoincareH sections, and to study periodic and non-periodic motions
involving several modes. Therefore, the HFEM is an e$cient tool for geometrically
non-linear analyses in the time domain.
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APPENDIX A: DISPLACEMENT SHAPE FUNCTIONS

A.1. f DISPLACEMENT SHAPE FUNCTIONS

The "rst four f displacement shape functions are the Hermite cubics:
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The other f shape functions are the Rodrigues form of Legendre polynomials, given by
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where r!!"r(r!2)2(2 or 1), 0!!"(!1)!!"1 and INT(r/2) denotes the integer part of r/2.

A.2. g DISPLACEMENT SHAPE FUNCTIONS

The "rst two g shape functions are linear functions,
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and the following are given by

g
r
"
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+
n/0

(!1)n(2r!2n!5)!!

2nn!(r!2n!1)!
mr~2n~1, r'2.

A.3. TRIGONOMETRIC SHAPE FUNCTIONS

The set trigonometric shape functions is de"ned by the following equation:
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